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Abstract 

Despite scarcity being central to economics, the scarcity of brain’s internal resources has 

largely been ignored. Neuroscience research increasingly points to the brain evolving as a 

prediction engine in response to this internal-resource scarcity. The brain meets every 

situation with subconscious expectations, which are contrasted with information to 

generate error-signals.  Selective processing of such error-signals, in lieu of the entire 

information-stream, saves brain-resources. We show that applying this predictive-

processing framework to asset pricing gives rise to an alpha in CAPM. Several empirically 

observed phenomena correspond to either cross-sectional or time-specific variations in this 

alpha, potentially synthesizing neoclassical and behavioral finance. 
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Asset Pricing in the Resource-Constrained Brain 

 

Even though resource scarcity has long been a defining notion in economics, the fact that 

the brain resources (neurons and energy) are also finite has largely been ignored.1 Perhaps, 

not having a clear framework for analyzing the implications of such internal resource 

scarcity has played a role in this neglect. However, over the past decade and a half, 

neuroscience research has been converging to a framework which views the brain as a 

‘prediction machine’ that uses predictions to conserve internal resources.2 In this article, we 

show that this framework, known as ‘predictive processing’, provides appropriate 

conceptual tools for studying the implications of internal-resource scarcity.  Specifically, we 

show that incorporating the predictive-processing framework into asset pricing gives rise to 

an alpha in the CAPM. Several empirically observed phenomena (value, momentum, size, 

high-alpha-of-low-beta, and time-specific changes in SML slopes)3 4correspond to either 

cross-sectional or time-specific variations in this alpha. Additional insights about these 

phenomena emerge that are consistent with empirical evidence. Hence, potentially, a 

unified explanation for several asset pricing anomalies emerges as ultimately due to the 

brain’s optimal response to its own internal resource scarcity.  

The predictive processing framework says that the brain uses its prior knowledge of 

the world to form subconscious predictions in every situation. Such predictions are then 

contrasted with available information to generate error signals. Such error signals are then 

 
1 A few exceptions are Alonso et al (2014), Siddiqi and Murphy (2023), and Siddiqi (2023). McKenzie (2018) 
argues that the neoclassical toolbox extends to behavioral economics if the brain resource scarcity is 
acknowledged.  
2 There is a large body of literature in the cognitive science that considers the brain to be a prediction machine 
(Nave et al 2020, Clark 2013, Hohwy 2013, Friston 2010, Bubic et al 2010 among others). A sample based on 
writings of various cognitive scientists, which is suitable for non-specialist audience, includes Clark (2023), 
chapter 3 in Hawkins, J. (2021), chapter 4 in Feldman, L. B. (2021a), chapter 4 in Seth, A. (2021), and chapters 4 
and 5 in Goldstein (2020).  Feldman, L. B. (2021b) also provides a discussion of key ideas.  
3 Fama and French (2016) find deviations from the implications of the model, such as related to beta, size, 
value, and momentum building on early studies by Black (1972), Stoll and Whaley (1983), Fama and French 
(1993), and Jegadeesh and Titman (1993) among others.  This suggests that there is misspecification in the 
CAPM, and additional risk factors have been proposed (Fama and French 2016, 2011, 1993).  
4 Specific times when the SML slope is steeper include: Months when inflation is low or negative (Cohen, Polk, 
and Vuolteenaho 2005), days when news about inflation, unemployment, or Federal Open Markets Committee 
(FOMC) interest rate decisions are scheduled to be announced (Savor and Wilson 2014), periods of pessimistic 
investor sentiment (Antoniou et al 2015), and overnight (Hendershott et al 2020). 
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selectively incorporated into predictions based on the brain’s assessment of their relative 

value. By selectively processing error signals and mostly just leveraging prior knowledge to 

fill in the gaps, the brain greatly cuts down on the amount of information it needs to 

process.5 All expectations, ranging from the mundane (what you expect to see around the 

corner) to the relatively more sophisticated (risk and reward expectations), are constructed 

in the brain in this way.6  

 The above description points to the following four components of the predictive-

processing framework: (i) an internal model based on a synthesis of prior experiences in 

similar situations, (ii) subconscious predictions generated by the internal model that reflect 

typical behavior, (iii) error-signals that result from contrasting predictions with available 

information, and (iv) importance weights assigned to error-signals and predictions, leading 

to adjusted predictions, which are consciously experienced.7  

Applying predictive-processing to asset pricing where a decision-maker (DM) is 

concerned with equity valuation, requires specifying the above four components. We 

specify them as follows: (i) the internal model is based on a syntheses of prior experiences 

with similar firms8, (ii) subconscious equity risk and reward expectations (generated by the 

internal model) that reflect the average behavior in the relevant cluster of firms, (iii) error-

signals that are generated by contrasting the available information with the internally 

generated subconscious expectations, and (iv) importance weights such that the error-

signals that generate arbitrage opportunities against the DM are prioritized and eliminated 

over others, leading to adjusted risk and reward expectations that are consciously 

experienced.9    

 
5 See chapter 4 in Hawkins, J. (2021) (and references therein) for a more detailed discussion on the common 
observation in neuroscience that a lot more brain activity is associated with error-signal processing. 
6 Predictive Processing is more appropriately termed Hierarchical Predictive Processing as it views the mind as 
being organized in layers with a higher-level layer making predictions about the level just below with only the 
error-signals reaching the higher-level from the level just below. In this way, the lowest level predicts the 
incoming sensory signals, whereas a higher level makes predictions about the underlying causes such as 
changing risk and reward. Hence, this framework offers a unified theory of the mind ranging from sensory 
perception to higher cognition (see Clark (2013)).  
7 For illustrations of how these components work together to create various experiences, see the appendix in 
Clark (2023). 
8 This is in line with how internal models are constructed in general. For example, your internal model of a pet 
dog is constructed based on your prior experiences with pet dogs. 
9 Elimination of arbitrage opportunities implies that a pricing kernel exists which prices all assets as per the 
fundamental theorem of finance.  
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While analyzing a firm, the DM’s brain activates a relevant internal model (constructed by 

synthesizing prior experiences with similar firms), which generates subconscious risk and 

reward expectations that reflect the average behavior in the relevant cluster of firms. These 

initial expectations are compared with available information about the firm’s cashflows to 

generate error-signals. The resource-constrained brain, in general, does not have sufficient 

resources to process all errors-signals. So, it prioritizes high value error-signals (errors that 

create arbitrage opportunities against the DM) over others for processing. This leads to 

adjusted final expectations that are consciously experienced. In general, expectations are 

adjusted towards rational expectations to the extent that (exploitable) arbitrage 

opportunities are eliminated without achieving full convergence. Hence, the influence of 

internally generated subconscious expectations remains. It is this influence which shows up 

as the alpha term in the CAPM.  

The key novel insight is that the relative resource allocation between processing of 

risk error-signals vs. reward error-signals matters. We show that if the resources are 

diverted away from the processing of risk error-signals to reward error-signals than the 

slope of the security -market-line (SML) flattens. The opposite happens if the diversion is in 

the reverse direction.  The observed times where the SML slope is steeper such as months 

when there is weak inflation data or deflation indicating higher macroeconomic risks (Cohen 

et al 2005), on macroeconomic announcement days (Savor and Wilson 2014), periods of 

pessimistic investor sentiment (Antoniou et al 2015), and around market open (Hendershott 

et al 2020) when highly leveraged intraday traders typically enter the market, align well with 

this basic insight. 

If the brain pays more attention to the processing of reward error-signals than risk 

error-signals, then high-alpha-of-low-beta effect or betting-against-beta (BAB) effect arises 

(Frazzini and Pederson 2014, Black 1972) which gets stronger with the resource tilt favoring 

reward. When cross-sectional variability in firm profits is higher, it makes sense for the brain 

to allocate more resources to reward error-signal processing. Similarly, when cross-sectional 

variability in firm risk is higher, the brain responds by allocating more resources to risk error-

signal processing. It follows that BAB and the profitability factor should have a positive 

correlation, whereas BAB and the investment factor should be negatively correlated. The 

empirical findings are consistent with this prediction (Novy-Marx and Velikov 2022).  
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If the resources allocated to the processing of reward error-signal processing are not just 

larger but sufficiently larger, then the size effect also emerges. Intuitively, subconscious 

expectations (being an average of all firms in the cluster) overestimate both reward and risk 

for small-size firms. If reward error-signal processing is much stronger in the DM’s brain, 

then ultimately, risk overestimation dominates in alpha, leading to the size effect. One 

expects to see this for high quality firms, where available information mostly shows stable 

profitability without any red flags showing risk related concerns. This prediction matches the 

empirical findings on the size effect (Asness et al 2018).  

Value effect emerges in the brain-based framework as two firms with identical 

fundamentals may belong to different clusters; hence, have their initial subconscious 

expectations generated by different internal models. As the value effect is rooted in inter-

cluster variation in internal models, it follows that when reliance on internal models is 

weaker, that is, when the brain assigns low importance weights to predictions coming from 

the internal models, value effect is weaker. So, one expects to see a weaker or insignificant 

value effect when major market movements indicate a significant break from the past. This 

prediction is consistent with the empirical findings on the disappearance of the value effect 

during the dot.com bubble of the 90’s, GFC-2008, and during the Covid-19 pandemic 

(Campbell, Giglio, and Polk 2023). 

Firms that have shown substantial deviation from the norm, such as recent 

substantially superior or inferior performance, may see a shift in importance weights 

assigned to error-signals vs internally generated subconscious expectations. This weakening 

of the importance given to internal models in favor of error-signals generates price 

momentum. Hence, the brain-based approach predicts that the momentum effect is not 

only negatively correlated with value, but also is ultimately driven by changing 

fundamentals, which is consistent with empirical findings on the momentum effect (Novy-

Marx 2015). 
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2. The Brain-Based Capital Asset Pricing Model 

We rely on a standard derivation of CAPM (for example, as in Frazzini and Pedersen (2014)) 

and consider an overlapping generations (OLG) economy. The only innovation is that we use 

the predictive processing framework to specify expectations, which makes rational 

expectations a special case instead of the only case. Each agent lives for two periods. Agents 

that are born at 𝑡 aim to maximize their utility of wealth at 𝑡 + 1. Their utility functions are 

identical and exhibit mean-variance preferences. They trade securities 𝑠 = 1, ⋯ , 𝑆 where 

security 𝑠 pays dividends 𝑑𝑡
𝑠and has 𝑛𝑠

∗ shares outstanding and invest the rest of their 

wealth in a risk-free asset that offers a rate of 𝑟𝐹. 

The market is described by a representative agent who is a mean-variance 

maximizer: 

max 𝑛′{𝐸𝑡(𝑃𝑡+1 + 𝑑𝑡+1) − (1 + 𝑟𝐹)𝑃𝑡} −
𝛾

2
𝑛′Ω𝑡𝑛  

where 𝑃𝑡 is the vector of prices, Ω𝑡 is the variance-covariance matrix of 𝑃𝑡+1 + 𝑑𝑡+1, and 𝛾 is 

the risk-aversion parameter. 

It follows that the price of a security, 𝑠, is given by: 

𝑃𝑡
𝑠 =

𝐸(𝑋𝑡+1
𝑠 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )

1 + 𝑟𝐹
                                                                                               (2.1) 

where security 𝑠 payoff is 𝑋𝑡+1
𝑠 = 𝑃𝑡+1

𝑠 + 𝑑𝑡+1
𝑠   

and the aggregate market payoff is: 

𝑋𝑡+1
𝑀 = 𝑛1

∗(𝑃𝑡+1
1 + 𝑑𝑡+1

1 ) + 𝑛2
∗(𝑃𝑡+1

2 + 𝑑𝑡+1
2 ) +∙∙∙∙∙∙∙∙∙∙∙∙ +𝑛𝑆

∗(𝑃𝑡+1
𝑆 + 𝑑𝑡+1

𝑆 ). 

 As discussed in the introduction, we apply the predictive processing framework as 

follows: An internal model (trained on prior experiences with similar firms) generates 

subconscious risk and reward expectations that reflect the average behavior in the cluster. 

That is, the DM is not aware of the formation of such subconscious expectations. 

Nevertheless, they play a critical role in the formation of adjusted expectations that are 

consciously experienced. 
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Using 𝑞 as the cluster identifier and denoting the number of firms in the cluster by 𝑁𝑞, the 

subconscious reward and risk expectations are: 

𝐸𝑞 = ∑
𝐸[𝑋𝑡+1

𝑖 ]

𝑁𝑞
                                                                                                                               (2.2)

𝑁𝑞

𝑖=1

 

𝐶𝑜𝑣𝑞 = ∑
𝐶𝑜𝑣[𝑋𝑡+1

𝑖 , 𝑋𝑡+1
𝑀 ]

𝑁𝑞
                                                                                                           (2.3)

𝑁𝑞

𝑖=1

 

The brain contrasts these subconscious expectations with available information to generate 

error-signals. Based on the brain’s assessment of their relative importance, error-signals are 

prioritized for incorporating into expectations. In particular, error-signals that create 

exploitable arbitrage opportunities against the DM are prioritized over others. In general, in 

a resource-constrained brain, the initial subconscious expectations are adjusted in the 

direction of rational expectations without achieving full convergence. This process, which 

leads to adjusted expectations that are consciously experienced, is described by introducing 

a parameter, 𝑚1: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸𝑞 − 𝑚1𝐷1                                                                                                                     (2.4) 

where 𝐷1 = 𝐸𝑞 − 𝐸(𝑋𝑡+1
𝑠 ) is the correct adjustment needed, and 𝑚1 is the fraction of 

correct adjustment reached so 0 ≤ 𝑚1 ≤ 1. Rational expectations, 𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ), 

correspond to processing of all error-signals and achievement of full adjustment: 𝑚1 = 1.  

Similarly, the adjusted risk expectation is: 

𝐶𝑜𝑣′((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) = 𝐶𝑜𝑣𝑞 − 𝑚2𝐷2                                                                                            (2.5) 

where 𝐷2 = 𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) is the correct adjustment needed, and 𝑚2 is the 

fraction of correct adjustment, 0 ≤ 𝑚2 ≤ 1, achieved. Rational expectations, 

𝐶𝑜𝑣′((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) = 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) , correspond to elimination of all gaps and 

achievement of full adjustment: 𝑚2 = 1.  

 If the brain has infinite resources, then of course, it can process all error-signals and 

always form rational expectations; however, a resource-constrained brain prioritizes error-

signals that create exploitable arbitrage opportunities against the DM over others, which in 
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general adjusts expectations in the direction of rational expectations without necessarily 

achieving full convergence. A simple re-arrangement of (2.4) and (2.5) leads to: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)(𝐸𝑞 − 𝐸(𝑋𝑡+1
𝑠 ))                                                                      (2.6) 

𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) =  𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) + (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )))            (2.7) 

 The consciously experienced reward and risk expectations, 𝐸′(𝑋𝑡+1
𝑠 ) and  

𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) in (2.6) and (2.7), follow form the predictive processing framework as 

applied to asset pricing. Rational expectations are a special case in the framework 

corresponding to 𝑚1 = 1 and 𝑚2 = 1.  

  The predictive processing framework gives rise to an alpha term in the CAPM as 

proposition 1 shows. 

 

Proposition 1 (The Brain-Based CAPM) Predictive processing changes the classical CAPM in 

only one way: an additional term alpha appears whose value depends on the resource 

allocation decisions in the brain. The brain-based CAPM takes the following form:  

𝑬[𝑹𝒕+𝟏
𝒔 ] − 𝑹𝑭 = 𝜶𝒔 + (𝑬[𝑹𝒕+𝟏

𝑴 ] − 𝑹𝑭) ∙ 𝜷𝒔                                                                               (𝟐. 𝟖) 

where 𝑬[𝑹𝒕+𝟏
𝒔 ] is the expected (gross) return from stock 𝒔, 𝑹𝑭 is the (gross) risk-free 

return, 𝑬[𝑹𝒕+𝟏
𝑴 ] is the expected (gross) return from the aggregate market portfolio, 𝜷𝒔 is 

the beta of the stock 𝒔, and 𝜶𝒔 takes the following form given below  

𝜶𝒔 = (
�̅�

𝒘𝒔
− 𝜷𝒔

(𝒎𝟏 − 𝒎𝟐)

(𝟏 − 𝒎𝟐)
)

(𝟏 − 𝒎𝟐)𝜹𝑴

𝒎𝟏
−  

(𝟏 − 𝒎𝟏)

𝒎𝟏
(

𝑬𝑹̅̅ ̅̅

𝒘𝒔
− 𝑹𝑭)                                (𝟐. 𝟗) 

where �̅� = ∑
𝝆𝒊𝒘𝒊𝜷𝒊

𝑵𝒒

𝑵𝒒

𝒊=𝟏
 is the average market-value weighted beta in the cluster, 𝒘𝒊 =

𝒏𝒊
∗𝑷𝒕

𝒊

𝑷𝒕
𝑴 , 

(𝑷𝒕
𝒊  is the share price of firm 𝒊, 𝒏𝒊

∗is the number of shares of firm 𝒊 outstanding, and 𝑷𝒕
𝑴is 

the price of the aggregate market portfolio), 𝝆𝒊 =
𝒏𝒔

∗

𝒏𝒊
∗, 𝑬𝑹̅̅ ̅̅ = ∑

𝝆𝒊𝒘𝒊𝑬[𝑹𝒕+𝟏
𝒊 ]

𝑵𝒒

𝑵𝒒

𝒊=𝟏
is the average 

market-value weighted expected return in the cluster,  𝒘𝒔 =
𝒏𝒔

∗𝑷𝒕
𝒔

𝑷𝒕
𝑴  is the market-value 

weight of firm s, and 𝜹𝑴 = 𝑬[𝑹𝒕+𝟏
𝑴 ] − 𝑹𝑭. 
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Proof: 

See Appendix A. 

▪ 

As can be seen from (2.9) in proposition 1, when the DM’s brain has sufficient resources to 

fully process both the reward error-signals and the risk error-signals, that is, when 𝑚1 = 1 

and 𝑚2 = 1, then 𝛼𝑠 = 0, and the classical CAPM is recovered. 

 

3. Asset Pricing Anomalies: A Brain-Based Perspective 

The enriched CAPM (presented in proposition 1) has intriguing implications for the slope of 

the security-market-line (SML). It also generates betting-against-beta (BAB), size, value, and 

momentum effects, which arise as various partial derivatives of the alpha term in (2.9) 

depending on resource allocation decisions in the brain between reward error-signal 

processing vs risk error-signal processing. 

 

3.1 The Slope of the Security Market Line (SML) 

SML slope depends on the relative resource allocation decisions inside the DM’s brain 

regarding reward error-signal processing vs. risk error-signal processing. If more (less) 

resources are allocated to reward error-signal processing or less (more) resources are 

allocated to risk error-signal processing, that is, when 𝑚1rises (falls) or 𝑚2 falls (rises), then 

the SML rotates in the clockwise (counter clockwise) direction or the SML slope flattens 

(steepens). Intuitively, this is due to the changes in the relative underestimation of variation 

in risk across firms. If it rises, SML flattens, if it falls, SML steepens. Figure 1 and figure 2 

illustrate. 
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Figure 1 - Slope of the SML when 𝒎𝟏rises or 𝒎𝟐 falls 
When 𝑚1rises or 𝑚2 falls, SML rotates in the clockwise direction as there is a threshold value, 𝛽∗, 

below which 𝛼 rises (or becomes less negative) and above which 𝛼 falls (or becomes more negative). 

The solid line indicates the brain-based SML whereas the dotted line indicates the classical SML.  
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Figure 2 - Slope of the SML when 𝒎𝟏falls or 𝒎𝟐 rises 
When 𝑚1falls or 𝑚2 rises, SML rotates in the counter clockwise direction as there is a threshold 

value, 𝛽∗, below which 𝛼 falls (or becomes more negative) and above which 𝛼 rises (or becomes less 

negative). The solid line indicates the brain-based SML whereas the dotted line indicates the classical 

SML. 
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Proposition 2 (SML slope) If more (less) resources are allocated to reward error-signal 

processing or less (more) resources are allocated to risk error-signal processing, that is, 

when 𝒎𝟏rises (falls) or 𝒎𝟐 falls (rises) then the SML rotates in the clockwise (counter 

clockwise) direction. 

Proof 

See appendix B. 

▪ 

The empirically observed variation in SML slope at specific times aligns well with the brain-

based model: 

• Around market open, the SML slope typically steepens and then gradually flattens 

during most of the day (Hendershott et al 2020). Intraday traders who are typically 

highly leveraged enter around market open and then gradually close out their 

position during the day (Bogousslavsky 2021). Being highly leveraged, such traders’ 

brains assign higher importance weights to risk error-signals. This increases 𝑚2, 

which steepens SML as relative underestimation of risk variation across firms falls as 

a result. SML slope flattens during the day as intraday traders exit the market by 

closing out their positions for the day, lowering 𝑚2 in the process. 

• SML slope is steeper when there is anemic inflation or deflation indicating a weak 

economy (Cohen et al 2005). It is also steeper in periods of pessimistic investor 

sentiment (Antoniou et al 2015). It makes sense that the brain gives more 

importance to risk error-signals during such times. So 𝑚2 rises, which lowers the 

relative underestimation in risk variation across firms. This steepens the SML slope in 

the brain-based model. 

• SML slope is steeper on macroeconomic announcement days (Savor and Wilson 

2014). As most traders have already adjusted their portfolios leading up to the 

announcement day, trades on the actual announcement day are generally by those 

whose expectations turned out to be incorrect. The resulting higher importance 

weights to risk error-signals in the brains of such surprised traders steepens the SML 

slope (𝑚2 rises). 
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High-alpha-of-low-beta effect  

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1                                     1 

Figure 3 High-alpha-of-low-beta effect is observed in the lined region (with angular lines). 

 

3.2 High-alpha-of-low-beta/ Betting-against-beta 

In the brain-based CAPM, high-alpha-of-low-beta or betting-against-beta arises under the 

following condition (taking the partial derivative of alpha in (2.9) with respect to 𝛽𝑠):  

𝜕𝛼𝑠

𝜕𝛽𝑠
= −

𝛿𝑀(𝑚1 − 𝑚2)

𝑚1
< 0                                                                                                             (3.1) 

Figure 3 shows the region in which high-alpha-of-low-beta or betting-against-beta (BAB) 

effect is observed in the space of parameters 𝑚1 and 𝑚2. The effect is observed if 𝑚1 > 𝑚2.  

 

Proposition 3 (High-alpha-of-low-beta/Betting-against-beta (BAB)) High-alpha-of-low-beta 

effect arises if the importance weights assigned to reward error-signals are higher than 

the importance weights assigned to risk error-signals such that 𝒎𝟏 > 𝒎𝟐. 

 

Overall, the brain-based approach predicts that the high-alpha-of-low-beta effect is not 

universally observed. The effect is only observed when 𝑚1 > 𝑚2, and it gets stronger when 
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𝑚1 − 𝑚2 rises. Specific times when profitability variation across firms is higher may compel 

the brain to assign higher importance weights to reward error-signals, so 𝑚1rises, and times 

when risk variation across firms is smaller may lead to the brain lowering the importance 

weights on risk error-signals, so 𝑚2 falls. As the profitability factor (Fama and French 2016) 

is typically constructed by subtracting the average return on weak operating profitability 

portfolio from the average return on robust operating profitability portfolio, the profitability 

factor is higher when profitability variation across firms is higher. Similarly, as the 

investment factor (Fama and French 2016) is constructed by subtracting the average return 

on aggressive investment portfolio (largest year-on-year rise in assets) from the average 

return on conservative investment portfolio, lower investment factor generally corresponds 

to lower risk variation across firms. So, the brain-based model predicts that high-alpha-of-

low-beta effect should be positively correlated with the profitability factor and negatively 

correlated with the investment factor. This is consistent with the empirical findings in Novy-

Marx and Velikov (2022). Another novel prediction from (3.1) is that, in periods of falling 

prices due to higher risk aversion (which leads to higher ex-ante equity premium), the effect 

is stronger. 

 

3.3 The Size Effect 

The size effect refers to the notion that small-cap stocks outperform large-cap stocks, all 

else equal. Taking the partial derivative w.r.t the market-cap weight, 𝑤𝑠, in (2.9): 

𝜕𝛼𝑠

𝜕𝑤𝑠
= −𝛿𝑀

�̅�

𝑤𝑠
2

(1 − 𝑚2)

𝑚1
+

(1 − 𝑚1)

𝑚1

𝐸𝑅̅̅ ̅̅

𝑤𝑠
2

                                                                                  (3.2)  

⇒
𝜕𝛼𝑠

𝜕𝑤𝑠
< 0 if 𝑚1 > 1 −

�̅�𝛿𝑀

𝐸𝑅̅̅ ̅̅
(1 − 𝑚2).  

So, the size effect arises due to resource allocation decisions in the brain if the importance 

assigned to reward error-signals is sufficiently larger than the importance assigned to risk error-

signals such that 𝑚1 is sufficiently larger than 𝑚2. Intuitively, subconscious expectations (that 

reflect cluster average) overestimate both the reward and the risk for small-size firms. If 𝑚1is 

sufficiently larger than 𝑚2, then risk overestimation dominates alpha, resulting in the size 

effect. Figure 4 illustrates. 
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    The Size Effect 

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1            1 −
�̅�𝛿𝑀

𝐸𝑅̅̅ ̅̅
                 1 

Figure 4 The size effect is observed in the lined region (with angular lines). 

 

Proposition 4 (The Size Effect) The size effect arises when the importance weights assigned 

to reward error-signals are sufficiently larger than the importance weights assigned to risk 

error-signals such that 𝒎𝟏 > 𝟏 −
�̅�𝜹𝑴

𝑬𝑹̅̅ ̅̅
(𝟏 − 𝒎𝟐). 

 

For firms that have high and steady profitability and low risk, the importance weights 

assigned by the DM’s brain to reward error-signals are likely much larger than the 

importance weights assigned to risk error-signals. So, size effect is expected to matter 

among high quality firms. In line with this prediction, empirical evidence shows that the size 

effect matters for high quality stocks (high profitability and low risk) (Asness et al 2018). 
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The Value Effect 

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1            1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
                 1 

Figure 5 The value effect gets stronger in the direction of the arrows in the two regions split by the 

line 𝑚1 = 1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
(1 − 𝑚2).  

 

3.4 The Value Effect 

The value effect arises in the brain-based CAPM due to inter-cluster variation in internal 

models. That is, two firms with identical fundamentals have different alphas (and price to 

book ratios) if they belong to different clusters with each cluster having its own internal 

model. Suppose there are two firms, 𝑎 and 𝑏 with identical fundamentals. However, they 

belong to different clusters with each cluster having its own internal model. Their alphas 

are: 

𝛼𝑎 = (
𝛽𝑎
̅̅ ̅

𝑤𝑠
− 𝛽𝑠

(𝑚1 − 𝑚2)

(1 − 𝑚2)
)

(1 − 𝑚2)𝛿𝑀

𝑚1
−  

(1 − 𝑚1)

𝑚1
(

𝐸𝑅𝑎
̅̅ ̅̅ ̅

𝑤𝑠
− 𝑅𝐹)                                    (3.3) 

𝛼𝑏 = (
�̅�𝑏

𝑤𝑠
− 𝛽𝑠

(𝑚1 − 𝑚2)

(1 − 𝑚2)
)

(1 − 𝑚2)𝛿𝑀

𝑚1
−  

(1 − 𝑚1)

𝑚1
(

𝐸𝑅𝑏
̅̅ ̅̅ ̅

𝑤𝑠
− 𝑅𝐹)                                    (3.4) 

The difference in their alphas is: 

∆𝛼 =
∆�̅�

𝑤𝑠

(1 − 𝑚2)𝛿𝑀

𝑚1
−

(1 − 𝑚1)

𝑚1

∆𝐸𝑅̅̅ ̅̅

𝑤𝑠
                                                                                       (3.5) 
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As long as ∆𝛼 is different from zero, the value effect is observed with the low price to 

fundamentals stock outperforming the high price to fundamentals stock. ∆𝛼 = 0 if  

𝑚1 = 1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
(1 − 𝑚2). Away from this line, the value effect gets stronger. Figure 5 

illustrates. 

 

Proposition 5 (The Value Effect) If the resource allocation decisions in the brain are such 

that the inter-cluster variation in risk is not exactly balanced by the inter-cluster variation 

in reward, then the value effect is observed. Specifically, the effect is observed as long as 

𝒎𝟏 ≠ 𝟏 −
∆�̅�𝜹𝑴

∆𝑬𝑹̅̅ ̅̅̅
(𝟏 − 𝒎𝟐). 

  

It directly follows from (3.5) that the value effect is stronger among small-cap stocks. That is, 

its magnitude rises as 𝑤𝑠 falls. This provides a theoretical justification for the small-cap value 

strategy popular among professional traders. As the value effect in the brain-based CAPM 

has its roots in inter-cluster variation in internal models, it gets weaker if the brain lowers 

the importance weights assigned to internally generated predictions coming from the 

internal models. This is likely if there are major market movements suggesting a substantial 

break from the norm (making past less of an indicator of the future). This prediction is 

consistent with the empirical findings on the weakness/disappearance of the value effect in 

unusual time periods such as during parts of the dot.com bubble of the 90’s, GFC-2008, and 

the Covid-19 pandemic (Campbell, Giglio, and Polk 2023). 

 

3.5 The Momentum effect 

The empirical findings regarding the price momentum show how stocks with superior 

(inferior) recent performance continue to outperform (underperform) in the short run.  In 

the brain-based framework, the price of a security 𝑠 from (2.1) is: 

𝑃𝑡
𝑠 =

𝐸′(𝑋𝑡+1
𝑠 ) − 𝛾𝐶𝑜𝑣′(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )

1 + 𝑟𝐹
                                                                                            (3.6) 
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Where: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)(𝐸𝑞 − 𝐸(𝑋𝑡+1
𝑠 )) 

⇒ 𝐸′(𝑋𝑡+1
𝑠 ) = 𝑚1𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)𝐸𝑞                                                                                   (3.7) 

And, 𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) =  𝑚2𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) + (1 − 𝑚2)𝐶𝑜𝑣𝑞                                           (3.8) 

with the superscript 𝑞 denoting the subconscious expectations (that reflect the cluster 

average based on internal models trained on past experience).  

 In the brain-based CAPM, price momentum arises due to an increase in the 

importance weights given to error-signals that follow a large change in the fundamentals of 

momentum winners and losers. To fix ideas, suppose the reward fundamentals of a firm 

(the momentum winner) improve, so 𝐸(𝑋𝑡+1
𝑠 ) and consequently, 𝐸′(𝑋𝑡+1

𝑠 ) goes up, which 

increases the stock price immediately. The reward fundamentals of another firm (the 

momentum loser) deteriorate. So, its price falls. This change in fundamentals, then triggers 

a change in the importance weights given to reward error-signals. So, 𝑚1 goes up. For 

momentum winners (drawn from top 10% of firms by recent performance), the internal 

model underestimates reward, 𝐸𝑞 < 𝐸(𝑋𝑡+1
𝑠 ), whereas for momentum losers (bottom 10% 

by recent performance), the internal model overestimates reward, 𝐸𝑞 > 𝐸(𝑋𝑡+1
𝑠 ). So, this 

increase in 𝑚1, which follows a large change in fundamentals, increases the price of the 

momentum winner further and lowers the price of the momentum loser further.  

 The brain-based model predicts that the price momentum is ultimately a 

fundamentals-driven phenomena where an initial large change in fundamentals 

subsequently triggers an increase in importance weights given to error-signals. This 

prediction is consistent with the empirical findings on momentum effect being 

fundamentals driven (Novy-Marx 2015). As the increase in importance weights given to 

error-signals comes at the expense of the importance weights on internal models, 

momentum and value (which captures inter-cluster variation in internal models) are 

negatively correlated.  
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Proposition 6 (The Momentum Effect) Firms with recent large positive changes in earning 

fundamentals show a further increase in their market prices, and firms with recent large 

negative changes in earning fundamentals show a further decline in their market prices 

due to an increase in brain resources allocated to their valuations.  

 

4. Conclusions 

Scarcity of resources available in the external world has long been a defining notion in 

economics. However, another critically important scarcity, which is the scarcity of the 

brain’s internal resources (neurons and energy) has largely been neglected. Perhaps, this 

neglect is due to a lack of a coherent framework through which the implications of such 

internal resource scarcity could be analyzed. During the last decade and a half, neuroscience 

research has increasingly been converging to a framework that points to the brain evolving 

as a prediction engine in response to this internal-resource scarcity. According to this 

framework, which is generally referred to as predictive processing, the brain meets every 

situation with subconscious predictions, which are contrasted with information to generate 

error-signals.  Selective processing of such error-signals, in lieu of the entire information-

stream, saves brain-resources. In this article, we apply this framework to asset pricing and 

show that this gives rise to an alpha in the CAPM. This alpha term generates various CAPM 

anomalies such as size, BAB, value, and momentum, while leading to a flat SML that 

steepens at specific times and horizons based on internal resource allocation decisions in 

the brain.  This approach potentially offers a synthesis of behavioral and neoclassical finance 

as behavioral biases emerge due to the brain’s optimal response to its own internal 

resource scarcity.10  

 

 

 
10 In particular, the anchoring bias in Siddiqi (2019) and Siddiqi (2018), small-risk neglect in Siddiqi and Quiggin 
(2019), and zero-risk bias in Siddiqi (2017) can all be modelled as directly arising from predictive processing.  
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Appendix A 

Substituting from (2.6) and (2.7) into (2.1) and solving for expected return of 𝑠, 𝐸[𝑅𝑡+1
𝑠 ]: 

𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 +

𝛾

𝑃𝑡
𝑠 [𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 ) + (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )))]

−
(1 − 𝑚1)

𝑃𝑡
𝑠 [𝐸𝑞 − 𝐸(𝑋𝑡+1

𝑠 )]                                                                                   (𝐴1) 

Multiplying (A1) by the market-value weight, 𝑤𝑠 =
𝑛𝑠

∗𝑃𝑡
𝑠

𝑃𝑡
𝑀 , and aggregating across all firms, 

one can solve for 𝛾 as follows: 

𝛾 =
(𝐸[𝑅𝑡+1

𝑀 ] − 𝑅𝐹)

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )𝑃𝑡

𝑀                                                                                                                            (𝐴2) 

Substituting (A2) into (A1) and re-arranging leads to (2.8). 
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Appendix B 

𝜕𝛼𝑠

𝜕𝑚1
=

1

𝑚1
2 [

𝐸𝑅̅̅ ̅̅ − �̅�(1 − 𝑚2)𝛿𝑀

𝑤𝑠
− 𝛽𝑠𝛿𝑀𝑚2]                                                                              (𝐵1) 

There is a threshold value of 𝛽𝑠 below which 
𝜕𝛼𝑠

𝜕𝑚1
> 0 and above which 

𝜕𝛼𝑠

𝜕𝑚1
< 0. It follows 

that when 𝑚1 rises, SML rotates in the clockwise direction. That is, SML flattens. 

𝜕𝛼𝑠

𝜕𝑚2
=

−�̅�𝛿𝑀

𝑚1𝑤𝑠
+

𝛽𝑠𝛿𝑀

𝑚1
                                                                                                                       (𝐵2) 

There is a threshold value of 𝛽𝑠 below which 
𝜕𝛼𝑠

𝜕𝑚2
< 0 and above which 

𝜕𝛼𝑠

𝜕𝑚1
> 0. It follows 

that when 𝑚2 rises, SML rotates in the counter-clockwise direction. That is, SML steepens. 
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